Phase Transition Characteristics of Flame-Synthesized Gamma-Al2O3 Nanoparticles with Heat Treatment

نویسنده

  • Gyo Woo Lee
چکیده

In this study, the phase transition characteristics of flame-synthesized γ-Al2O3 nanoparticles to α-Al2O3 have been investigated. The nanoparticles were synthesized by using a coflow hydrogen diffusion flame. The phase transition and particle characteristics of the Al2O3 nanoparticles were determined by examining the crystalline structure and the shape of the collected nanoparticles before and after the heat treatment. The morphology and crystal structure of the Al2O3 nanoparticles were determined from SEM images and XRD analyses, respectively. The measured specific surface area and averaged particle size were 63.44m/g and 23.94nm, respectively. Based on the scanning electron microscope images and x-ray diffraction patterns, it is believed that the onset temperature of the phase transition to α-Al2O3 was existed near 1200 C. The averaged diameters of the sintered particles heat treated at 1,260C were approximately 80nm. Keywords—BET Specific Surface Area, Gamma-Al2O3 Nanoparticles, Flame Synthesis, Phase Transition, X-ray Diffraction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal Conductivity and Viscoelastic Properties of UV-curable Urethane Acrylate Reinforced with Modified Al2O3 Nanoparticles

In this study, UV-curable urethane acrylate UA synthesized and then characterized by FTIR and HNMR. For better dispersion of nanoparticles in polymeric matrix, nano Al2O3 was modified by silane coupling agent and then its nanocomposites were prepared. The characteristics of synthesized nanocomposites were analyzed by TGA, DMA and infrared thermography. The results signify that adding nano Al2O3...

متن کامل

Synthesis and characterization of Alumina (Al2O3) nanoparticles prepared by simple sol-gel method

Alumina is one of the most widely used ceramic materials as catalysts, catalyst supports and absorbents, and also wear resistant coating. This study focused on fabricating and characterizing of alumina ceramic nanoparticles fabricated using new and simple sol-gel method. Aluminium oxide (Al2O3) nanoparticles were synthesized by iron (III) nitrate 9-hydrate as precursor. Physicochemical properti...

متن کامل

Synthesis and characterization of Alumina (Al2O3) nanoparticles prepared by simple sol-gel method

Alumina is one of the most widely used ceramic materials as catalysts, catalyst supports and absorbents, and also wear resistant coating. This study focused on fabricating and characterizing of alumina ceramic nanoparticles fabricated using new and simple sol-gel method. Aluminium oxide (Al2O3) nanoparticles were synthesized by iron (III) nitrate 9-hydrate as precursor. Physicochemical properti...

متن کامل

Fabrication and Characterization of Rutile TiO2 Nanocrystals by Water Soluble Precursor

      In this research, TiO2 nanoparticles were synthesized by a simple wet chemical method. TiCl4 was used as precursor in hydrogen peroxideand ethanol. The TiO2 nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), electron dispersive spectroscopy (EDS) and UV-Vis spectrophotome...

متن کامل

Three-dimensional CFD modeling of fluid flow and heat transfer characteristics of Al2O3/water nanofluid in microchannel heat sink with Eulerian-Eulerian approach

In this paper, three-dimensional incompressible laminar fluid flow in a rectangular microchannel heat sink (MCHS) using Al2O3/water nanofluid as a cooling fluid is numerically studied. CFD prediction of fluid flow and forced convection heat transfer properties of nanofluid using single-phase and two-phase model (Eulerian-Eulerian approach) are compared. Hydraulic and thermal performance of microch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013